
Combining Two Worlds: MonetDB with Multi-Dimensional
Index Structure Support to Efficiently Query Scientific Data

Paul Blockhaus, David Broneske, Martin Schäler*, Veit Köppen, Gunter Saake
University of Magdeburg, *Karlsruhe Institute of Technology

SSDBM 2020, Demo-Track

D
S E
B

1

Motivation

2

❖ Big data analytics and scientific workloads force DBMSs to do massive filtering
❖ Multi-dimensional index structures to the rescue
❖ None of them executed in a full-fledged DBMS

preprint, 2018

104 105 106 107
101

102

103

104

Data Objects

Th
ro
ug

hp
ut

(q
ue
ri
es
/s
ec
)

[l
og

sc
al
e]

R⇤-tree kd-tree VA-file Scan (Hor. Part.) Scan (Vert. Part.)

Figure 7: Throughput when executing range queries with an
average selectivity of 0.4% on 5-dimensional uniformly dis-
tributed data objects using 24 software threads depending
on the dataset size.

cache misses due to random access. The latter has the largest impact
on the performance of MDRQ. Therefore, also on modern hardware,
hierarchical MDIS remain very sensitive to query selectivity.

7.4.3 Dataset Size. We measure the throughput when execut-
ing MDRQ with an average selectivity of 0.4% (� = 1.1%) on 5-
dimensional data objects following an uniform distribution w.r.t.
the number of objects. Figure 7 shows the results.

As expected, when the number of data objects increases, the
search throughput of all contestants decreases because a growing
number of data objects match the query. Interestingly, both par-
allel scans, especially the variant employing vertical partitioning,
outperform MDIS for small datasets consisting of up to 105 objects,
although the query selectivity is very high. MDIS do not seem
to be worthwhile for such small amounts of data. As the dataset
size increases, the pruning techniques of MDIS pay o�. MDIS can
e�ciently reduce the data space while the parallel scans have to
consider all data objects for query evaluation.

7.5 Synthetic Data (Clusters)
We measure the throughput when executing MDRQ on 1M 5-
dimensional data objects from the dataset SYNT-CLUST depending
on the number of clusters. Recall that we are generating MDRQ by
randomly picking two data objects as range boundaries. Thus, one
MDRQ may cross several clusters, which results in a decreasing
query selectivity as the number of clusters increases: 1 cluster (avg
0.38%, � = 0.94%), 5 clusters (avg 16.24%, � = 19.13%), 10 clusters
(avg 23.12%, � = 21.88%), and 20 clusters (avg 27.40%, � = 22.71%).
Figure 8 shows the results of this experiment.

Although the R⇤-tree and the kd-tree achieve the best throughput
for the dataset with one cluster, their performance decreases as the
number of clusters increases (which implies decreasing selectivities).
In contrast, the VA-�le and both parallel scans are less a�ected.
Their throughput is almost independent of the number of clusters.

7.6 POWER
We measure the throughput of the contestants when executing
MDRQ with an average selectivity of 11.12% (� = 13.43%) on the

1 5 10 20

101

102

Clusters

Th
ro
ug

hp
ut

(q
ue
ri
es
/s
ec
)

[l
og

sc
al
e]

R⇤-tree kd-tree VA-file Scan (Hor. Part.) Scan (Vert. Part.)

Figure 8: Throughput when executing range queries with an
average selectivity of 0.38% (1 cluster) to 27.40% (20 clusters)
on 1M 5-dimensional data objects using 24 software threads
depending on the number of clusters.

104 105 106 107

100

102

104

Data Objects

Th
ro
ug

hp
ut

(q
ue
ri
es
/s
ec
)

[l
og

sc
al
e]

R⇤-tree kd-tree VA-file Scan (Hor. Part.) Scan (Vert. Part.)

Figure 9: Throughput when executing range queries with an
average selectivity of 11.12% on the 3-dimensional POWER
dataset using 24 software threads depending on dataset size.

POWER dataset. In contrast to Figure 7, which shows the through-
put for uniformly distributed data, Figure 9 visualizes the through-
put on (skewed) real-world data of varying dataset size. This ex-
periment con�rms that the throughput of all contestants decreases
when the number of data objects increases. As opposed to the experi-
ments on synthetic data, scan-based approaches always outperform
hierarchical MDIS regardless of dataset size.

7.7 GMRQ Benchmark
We �rst study the throughput of all contestants when executing
the query templates from the GMRQ Benchmark. Each template is
instantiated 100 times using values derived from the 1000 Genomes
Project dataset, as described in Section 6.2. Figure 10 shows the
results of this experiment for each template and a mixed work-
load. Both parallel scans outperform all evaluated MDIS for the
Mixed Workload, Query Template 1, Query Template 2 and Query
Template 3. For Query Templates 4-8, which select only few data ob-
jects and have a selectivity (much) below 1%, especially the kd-tree
shows its strengths and outperforms scanning.

In the next experiment, using the Mixed Workload, we evalu-
ate the scalability of all contestants depending on the number of
used threads. Note that the Mixed Workload of GMRQB consists of
partial- and complete-match MDRQ that query 5.81 dimensions on

BB-Tree kd-tree PH-tree R⇤-tree VA-�le Scan

CPU Cycles 164M 8,306M 1,908M 252M 2,934M 1,582M

LLC Accesses 1.0M 824M 1.2M 2.5M 1.8M 0.5M

LLC Misses 0.7M 0.9M 0.8M 0.5M 1.6M 0.3M

TLB Misses 0.3M 1.0M 0.3M 0.3M 0.2M 0.1M

Branch Mispr. 0.1M 0.7M 3M 0.2M 10M 7M

Table 3: Performance counters per range query (1% selec-
tivity;n=10M, m=5, UNIFORM).

10 20 30 40 50 60 70 80 90 100

10�2

10�1

100

101

102

Dimensions

Av
g.
Ex
ec
.T

im
e
(m

s)
[l
og
ar
ith

m
ic
sc
al
e]

BB-Tree kd-tree PH-tree R⇤-tree VA-file Scan

Figure 12: Performance of exact-match range queries (av-
erage selectivity = 1%, � = 0.7%) depending on dimension-
ality (n=10M, UNIFORM).

growing dimensionality, this results in very low single-dimension
selectivities posing serious challenges to MDIS because pruning
becomes less useful. For instance, when running complete-match
MDRQ with an overall selectivity of 1% on 100-dimensional
uniformly distributed data, where dimensions are not corre-
lated, single-dimension selectivities are approximately 95.50%, as
0.955100 ⇡ 0.01.

Figure 12 shows the runtimes of exact-match queries for di-
mensionalities between ten and 1003. For such workloads, all
methods except the R⇤-tree are mostly una�ected by the dimen-
sionality of the data space. Similarly, Figure 13 shows the run-
times of complete-matchMDRQdepending on the dimensionality.
All methods show a performance degradation roughly propor-
tional to the dimensionality of the data space, starting at a di-
mensionality of 20, because an increasing number of dimensions
has to be compared when evaluating queries. The slow-down is
more pronounced for lower dimensionalities.

We also executed workloads on instances of CLUST featuring
�ve and ten dimensions (data not shown). All competitors behave
very similar as for UNIFORM: Exact-match queries are almost
una�ected by the dimensionality of the data space, whereas range
queries degrade noteably.

5.8 Low-Cardinality Dimensions
Low-cardinality dimensions are challenging for BB-Trees because
they make it impossible to �nd k di�erent delimiter values, which
limits the pruning power of the IST. We �rst study this e�ect
using range queries applied to ten million �ve-dimensional data
objects from UNIFORM with di�erent moderately low cardinalti-
ties for all dimensions. Results are shown in Figure 14. At these
cardinalities, none of the competitors is a�ected severely as the

3Note that the space requirements of the PH-tree exceeded the available 32 GB of
main memory for dimensionalities higher than ten. Similarly, the R⇤-tree ran out
of space for 100 dimensions.

10 20 30 40 50 60 70 80 90 100

103

104

105

Dimensions

Av
g.
Ex
ec
.T

im
e
(m

s)
[l
og
ar
ith

m
ic
sc
al
e]

BB-Tree kd-tree PH-tree R⇤-tree VA-file Scan

Figure 13: Performance of complete-match range queries
(average selectivity = 1%, � = 0.7%) depending on dimen-
sionality (n=10M, UNIFORM).

8 (2.4%) 12 (1.3%) 16 (0.8%) 32 (0.6%) 64 (0.8%)

102

103

104

105

Distinct Values per Dimension (Average Selectivity)

Av
g.
Ex
ec
.T

im
e
(m

s)
[l
og
ar
ith

m
ic
sc
al
e]

BB-Tree kd-tree PH-tree R⇤-tree VA-file Scan

Figure 14: Performance of MDRQ with a varying selectiv-
ity depending on number of distinct values per dimension
(n=10M, m=5, UNIFORM).

di�erences only correspond to the di�erent query selectivities.
Note that in the cases of eight and 16 distinct values per dimen-
sion, the data space includes duplicate data objects which is not
supported by the PH-tree; therefore, we omit this method in this
experiment.

Next, we performed an experiment with extremely low cardi-
nalities (between two and 12) yet used data of higher dimension-
ality. Figure 15 shows the performance of range queries with a
selectivity of 0.00002% (� = 0.0%), when applied to ten million
50-dimensional objects from UNIFORM. The PH-tree had to be
omitted because it produced incorrect results. This experiment
shows that the performance of most MDIS drops considerably
with lower cardinalities, whereas scans and VA-�les are much
less e�ected. However, for such low cardinalities other index
structures, like bitmaps [8], are probably a better choice anyway.

5.9 Mixed Workload
In most applications, MDIS are loaded in bulk before running
large batches of search queries. Once built, inserts and deletes
rarely happen. This experiment studies the contestants when run-
ning such workloads on data from GENOMIC. We use ten million
data objects, of which we �rst insert 9,999,9004. Next, we run 100
inserts, 100 deletes, 2,800 exact-match queries and 7,000 range
queries in random order. For inserts, we use objects, which were
not bulk loaded. For exact-match queries and deletes, we ran-
domly choose objects from the data set. This may result in queries
asking for previously deleted data objects. For range queries, we
4For the VA-�le, we insert all data objects at the beginning of the workload, because
it only supports bulk inserts.

���

4.5. Empirical Evaluation 49

example Sel predicate columns ColElf/ ColElfmin

in % ColElfred
Q1 98.0 l shipdate 0 0
Q10 24.68 l returnflag 4 0
Q14 1.3 l shipdate 0 0

Q6 1.72 l shipdate, l quantity, l discount {0,1,5} {0,2,1}
LQ19 1.4 l quantity, l shipmode, l shipinst. {1,2,3} {2,0,1}
Q17 0.099 p brand, p container {0,1} {1,0}
PQ19 0.083 p brand, p container, p size {0,1,2} {0,1,2}

Table 4.4: Query details for mono and multi-column selections

Q10 Q14
1

101

102

103

104

S
IM

D

S
IM

D

S
el
ec
ti
on

T
im

e
in

m
s

Q6 LQ19
1

101

102

103

104

S
IM

D
+
&

S
IM

D
+
&

ARScan BitWeaving Column Imprints BB-Tree-MT
Sorted Proj. Elf Elfred Elfmin

Figure 4.8: Query response times of Elf and accelerated full-table scans for mono-
column TPC-H queries (s = 100)

4.5.2.1 Mono-Column Selection Predicate Queries

In this section, we discuss the response times for the for mono-column selection
predicates Elf and its competitors. We start by comparing our Elf scenarios against
accelerated full-table scans including BitWeaving, Column Imprints and a scan
generated for each query using our adaptive reprogramming approach. Afterwards,
we discuss our result for Elf’s performance in comparison with the multi-dimensional
competitors BB-Tree and Sorted Projection.

Elf vs. Accelerated Full-Table Scans

In Figure 4.9, we depict the results for the mono-column selection predicates in
a logarithmic plot. For query Q1 and Q10, all accelerated full-table scans perform
similar, however for Q14, adaptive reprogramming generates a SIMD scan that
outperforms the other accelerated full-table scans by a factor of 3-4. The SIMD scan
performs best for Q1 and Q14, while a predicated version is best for Q10 due to its
medium selectivity.

Considering the performance of Elf, we observe high di↵erences regarding the three
queries in comparison to the competitors. For Q1 returning 98% of the tuples of
the Lineitem table, Elf is clearly outperformed by all accelerated full-table scans.

[Broneske, Phd Thesis 2019]

[Sprenger et al., SSDBM 2018] [Sprenger et al., EDBT 2018]

Elf — A Multi-Dimensional Tree Structure

1

2

0

1 0

1

0

00

T1
T2
T3

C2C1 C4

Table

0

0

1

C3

3
[Broneske et al., ICDE 2017]

Elf — A Multi-Dimensional Tree Structure

0 1
Column C1

(1)1

2

0

1 0

1

0

00

T1
T2
T3

C2C1 C4

Table

0

0

1

C3

3
[Broneske et al., ICDE 2017]Corresponding Elf for the Table’s data

Elf — A Multi-Dimensional Tree Structure

0 1
Column C1

(1)

1 2(2) Column C2

1

2

0

1 0

1

0

00

T1
T2
T3

C2C1 C4

Table

0

0

1

C3

3
[Broneske et al., ICDE 2017]Corresponding Elf for the Table’s data

Elf — A Multi-Dimensional Tree Structure

0 1
Column C1

(1)

1 2(2) Column C2

1 T1

0

(7)

(4) Column C3

Column C4

1

2

0

1 0

1

0

00

T1
T2
T3

C2C1 C4

Table

0

0

1

C3

3
[Broneske et al., ICDE 2017]Corresponding Elf for the Table’s data

Elf — A Multi-Dimensional Tree Structure

0 1
Column C1

(1)

1 2(2) Column C2

1 T1

0

(7)

(4) Column C3

Column C4

0(3)

0 T3

1

(9)

(6)

0 T2

(5)

(8)

0

1

2

0

1 0

1

0

00

T1
T2
T3

C2C1 C4

Table

0

0

1

C3

3
[Broneske et al., ICDE 2017]Corresponding Elf for the Table’s data

Elf — A Multi-Dimensional Tree Structure

0 1
Column C1

(1)

1 2(2) Column C2

1 T1

0

(7)

(4) Column C3

Column C4

0(3)

0 T3

1

(9)

(6)

0 T2

(5)

(8)

0

1

2

0

1 0

1

0

00

T1
T2
T3

C2C1 C4

Table

0

0

1

C3

Prefix-Redundancy Elimination

3
[Broneske et al., ICDE 2017]Corresponding Elf for the Table’s data

Elf — A Multi-Dimensional Tree Structure

0 1
Column C1

(1)

1 2(2) Column C2

1 T1

0

(7)

(4) Column C3

Column C4

0(3)

0 T3

1

(9)

(6)

0 T2

(5)

(8)

0

1

2

0

1 0

1

0

00

T1
T2
T3

C2C1 C4

Table

0

0

1

C3

Prefix-Redundancy Elimination

Ordered Node Entries

3
[Broneske et al., ICDE 2017]Corresponding Elf for the Table’s data

SELECT count(*)
FROM Table
WHERE C1 < 2
AND C2 < 1

Example Query:

DEMO

Benchmark Usage

5

❖ Try it out yourself:
❖ http://www.elf.ovgu.de/SSDBM_Demo.html
❖ https://git.iti.cs.ovgu.de/elf/monetelf-frontend
❖ https://git.iti.cs.ovgu.de/elf/monet-elf

❖ Contact us:
❖ david.broneske@ovgu.de
❖ paul.blockhaus@st.ovgu.de

0 1
Column C1

(1)

1 2(2) Column C2

1 T1

0

(7)

(4) Column C3

Column C4

0(3)

0 T3

1

(9)

(6)

0 T2

(5)

(8)

0

http://www.elf.ovgu.de/SSDBM_Demo.html
https://git.iti.cs.ovgu.de/elf/monetelf-frontend
https://git.iti.cs.ovgu.de/elf/monet-elf
mailto:david.broneske@ovgu.de
mailto:paul.blockhaus@st.ovgu.de

References

6

D. Broneske, V. Köppen, G. Saake und M. Schäler (Apr. 2017). “Accelerating multi-column selection predicates in main-memory - The Elf approach”. In: Proceedings
of the International Conference on Data Engineering (ICDE). IEEE, S. 647–658.
S. Sprenger, P. Schäfer, U. Leser (July 2018). „Multidimensional range queries on modern hardware“ In: Proceedings of the International Conference on Scientific and
Statistical Database Management. ACM, S. 1–12
D. Broneske (May 2019). „Accelerating mono and multi-column selection predicates in modern main-memory database systems“. In PhD Thesis, University of
Magdeburg.
S. Sprenger, P. Schäfer, U. Leser (Aug. 2019). „BB-Tree: A practical and efficient main-memory index structure for multidimensional workloads“. In: Proceedings of
the International Conference on Extending Database Technology (ICDE).

